Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6696): 647-651, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723084

ABSTRACT

The quantum anomalous Hall effect (QAHE) is a robust topological phenomenon that features quantized Hall resistance at zero magnetic field. We report the QAHE in a rhombohedral pentalayer graphene-monolayer tungsten disulfide (WS2) heterostructure. Distinct from other experimentally confirmed QAHE systems, this system has neither magnetic element nor moiré superlattice effect. The QAH states emerge at charge neutrality and feature Chern numbers C = ±5 at temperatures of up to about 1.5 kelvin. This large QAHE arises from the synergy of the electron correlation in intrinsic flat bands of pentalayer graphene, the gate-tuning effect, and the proximity-induced Ising spin-orbit coupling. Our experiment demonstrates the potential of crystalline two-dimensional materials for intertwined electron correlation and band topology physics and may enable a route for engineering chiral Majorana edge states.

2.
Nature ; 626(8000): 759-764, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383622

ABSTRACT

The fractional quantum anomalous Hall effect (FQAHE), the analogue of the fractional quantum Hall effect1 at zero magnetic field, is predicted to exist in topological flat bands under spontaneous time-reversal-symmetry breaking2-6. The demonstration of FQAHE could lead to non-Abelian anyons that form the basis of topological quantum computation7-9. So far, FQAHE has been observed only in twisted MoTe2 at a moiré filling factor v > 1/2 (refs. 10-13). Graphene-based moiré superlattices are believed to host FQAHE with the potential advantage of superior material quality and higher electron mobility. Here we report the observation of integer and fractional QAH effects in a rhombohedral pentalayer graphene-hBN moiré superlattice. At zero magnetic field, we observed plateaus of quantized Hall resistance [Formula: see text] at v = 1, 2/3, 3/5, 4/7, 4/9, 3/7 and 2/5 of the moiré superlattice, respectively, accompanied by clear dips in the longitudinal resistance Rxx. Rxy equals [Formula: see text] at v = 1/2 and varies linearly with v, similar to the composite Fermi liquid in the half-filled lowest Landau level at high magnetic fields14-16. By tuning the gate-displacement field D and v, we observed phase transitions from composite Fermi liquid and FQAH states to other correlated electron states. Our system provides an ideal platform for exploring charge fractionalization and (non-Abelian) anyonic braiding at zero magnetic field7-9,17-19, especially considering a lateral junction between FQAHE and superconducting regions in the same device20-22.

3.
Nat Nanotechnol ; 19(2): 181-187, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37798567

ABSTRACT

Rhombohedral-stacked multilayer graphene hosts a pair of flat bands touching at zero energy, which should give rise to correlated electron phenomena that can be tuned further by an electric field. Moreover, when electron correlation breaks the isospin symmetry, the valley-dependent Berry phase at zero energy may give rise to topologically non-trivial states. Here we measure electron transport through hexagonal boron nitride-encapsulated pentalayer graphene down to 100 mK. We observed a correlated insulating state with resistance at the megaohm level or greater at charge density n = 0 and displacement field D = 0. Tight-binding calculations predict a metallic ground state under these conditions. By increasing D, we observed a Chern insulator state with C = -5 and two other states with C = -3 at a magnetic field of around 1 T. At high D and n, we observed isospin-polarized quarter- and half-metals. Hence, rhombohedral pentalayer graphene exhibits two different types of Fermi-surface instability, one driven by a pair of flat bands touching at zero energy, and one induced by the Stoner mechanism in a single flat band. Our results establish rhombohedral multilayer graphene as a suitable system for exploring intertwined electron correlation and topology phenomena in natural graphitic materials without the need for moiré superlattice engineering.

4.
Nature ; 623(7985): 41-47, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853117

ABSTRACT

Ferroic orders describe spontaneous polarization of spin, charge and lattice degrees of freedom in materials. Materials exhibiting multiple ferroic orders, known as multiferroics, have important parts in multifunctional electrical and magnetic device applications1-4. Two-dimensional materials with honeycomb lattices offer opportunities to engineer unconventional multiferroicity, in which the ferroic orders are driven purely by the orbital degrees of freedom and not by electron spin. These include ferro-valleytricity corresponding to the electron valley5 and ferro-orbital-magnetism6 supported by quantum geometric effects. These orbital multiferroics could offer strong valley-magnetic couplings and large responses to external fields-enabling device applications such as multiple-state memory elements and electric control of the valley and magnetic states. Here we report orbital multiferroicity in pentalayer rhombohedral graphene using low-temperature magneto-transport measurements. We observed anomalous Hall signals Rxy with an exceptionally large Hall angle (tanΘH > 0.6) and orbital magnetic hysteresis at hole doping. There are four such states with different valley polarizations and orbital magnetizations, forming a valley-magnetic quartet. By sweeping the gate electric field E, we observed a butterfly-shaped hysteresis of Rxy connecting the quartet. This hysteresis indicates a ferro-valleytronic order that couples to the composite field E · B (where B is the magnetic field), but not to the individual fields. Tuning E would switch each ferroic order independently and achieve non-volatile switching of them together. Our observations demonstrate a previously unknown type of multiferroics and point to electrically tunable ultralow-power valleytronic and magnetic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...